#### **AP Calculus BC Summer Readiness Packet**

**Differentiation Rules** d(f(g(x)) = f'(g(x))g'(x) dx $d(u \pm v) = du \pm dv$ d(uv) = u dv + v du $d\left(\frac{u}{v}\right) = \frac{v \cdot du - u \cdot dv}{v^2}$ **Basic Derivatives** d(k) = 0 $d(u^n) = nu^{n-1} du$  $d \sin(u) = \cos(u) du$  $d \cos(u) = -\sin(u) du$  $d \tan(u) = \sec^2(u) du$  $d \sec(u) = \sec(u) \tan(u) du$  $d \csc(u) = -\csc(u) \cot(u) du$  $d \cot(u) = -\csc^2(u) du$  $d \ln(u) = \frac{1}{u} du$  $d e^u = e^u du$  $d a^u = a^u \ln(a) du$  $d \log_{a}(u) = \frac{1}{u \ln(a)} du$  $d\sin^{-1}u = \frac{1}{\sqrt{1-u^2}} du$  $d \cos^{-1} u = \frac{-1}{\sqrt{1-u^2}} du$  $d \tan^{-1} u = \frac{1}{1 + e^{2}} du$  $d \sec^{-1} u = \frac{1}{|u|\sqrt{u^2 - 1}} du$ d u<sup>v</sup> -> use logarithmic differentiation (not included in this packet)

Motion v(t) = x'(t)a(t) = v'(t) = x''(t)j(t) = a'(t) = v''(t) = x'''(t)speed = |v(t)|

### Memorize the above formulas for derivatives.

Work the following problems on a separate piece of paper. This packet will serve as a study guide for your first quizzes of the semester.

## Find the first derivative. 1. f(x) = 5x - 12. $f(x) = x^2 + 3x - 4$ 3. $v = x^{-2/5}$ 4. $V(r) = \frac{4}{3}\pi r^3$ 5. $f(x) = 6x^{-9}$ 6. $f(x) = (16x)^3$ 7. $g(x) = x^2 + \frac{1}{x^2}$ 8. $y = \frac{x^2 + 4x + 3}{\sqrt{x}}$ 9. $y = 3x + 2e^{x}$ 10. $y = 4\pi^2$ 11. $y = ax^2 + bx + c$ 12. $y = x^2 e^x$ 13. $y = \frac{x^2}{a^x}$ 14. $y = (x^2 + x + 1)(x^2 + 2)$ 15. $y = (1 + \sqrt{x})(x - x^3)$ 16. $y = \frac{3x-7}{x^2+5x-4}$ $17. \quad y = \frac{\sqrt{x} - 1}{\sqrt{x} + 1}$ 18. $y = \frac{3x}{x^3 + 2x + 1}$

19.  $y = x - 3\sin x$ 20.  $y = \sin x - \cos x$ 21.  $y = x^3 \cos x$ 22.  $y = \frac{\tan x}{2}$ 23.  $y = \csc x \cot x$ 24.  $y = \frac{\tan x - 1}{\sec x}$ 25.  $y = \tan x (\sin x + \cos x)$ 26.  $y = x \sin x \cos x$ 27.  $y = (x^3 + 4x)^7$ 

28.  $v = \sqrt{x^2 - 7x}$ 

29. 
$$y = \left(x - \frac{1}{x}\right)^{\frac{3}{2}}$$
  
30.  $y = e^{-2x}$   
31.  $y = (3x - 2)^{10} (5x^2 - x + 1)^{1/2}$   
32.  $y = \left(\frac{x - 6}{x + 7}\right)^3$   
33.  $y = 5^{-\frac{1}{x}}$   
34.  $y = \tan(\cos x)$   
35.  $y = \sin(\sin(\sin x))$   
36.  $x^2 + y^2 = 1$   
37.  $x^3 + x^2y + 4y^2 = 6$   
38.  $\frac{y}{x - y} = x^2 + 1$   
39.  $\sqrt{xy} = 1 + x^2y$   
40.  $4\cos x \sin y = 1$   
41.  $y = \sin^{-1}(x^2)$   
42.  $y = (1 + x^2) \arctan x$   
43.  $y = \arctan(\cos x)$   
44.  $f(x) = \ln(2 - x)$   
45.  $f(x) = \ln(\cos x)$   
46.  $y = \log_3(x^2 - 4)$   
47.  $y = e^x \ln x$   
48.  $y = (\ln(\tan x))^2$   
Find the first and second derivatives

1. 
$$f(x) = x^{5} + 6x^{2} - 7x$$
  
2.  $f(x) = \cos 2x$   
3.  $f(x) = \sqrt{x^{2} + 1}$   
4.  $f(x) = \frac{x}{1 - x}$   
5.  $f(x) = x^{3}e^{5x}$ 

### **Problems:**

Solve the following problems.

1. Find a parabola with equation  $y = ax^2 + bx$  whose tangent line at (1,1) has equation y = 3x - 2.

2. Find an equation of the tangent line to the curve at the given point:  $y = \frac{2x}{x+1}$ , (1,1).

3. Find an equation of the tangent line to the curve at the

given point:  $y = \frac{e^x}{x}$ , (1,*e*).

4. Find all points on the graph of the function

 $y = 2\sin x + \sin^2 x$  at which the tangent line is horizontal.

5. Suppose that F(x) = f(g(x)) and g(3) = 6, g'(3) = 4 f'(3) = 2 and

g'(3) = 4, f'(3) = 2, and f'(6) = 7. Find F'(3).

# 6. A table of values for f, g, f', and g' is given.

| X | f(x) | g(x) | f'(x) | g'(x)  |
|---|------|------|-------|--------|
| 1 | 3    | 2    | 4     | 6<br>7 |
| 3 | 7    | 2    | 7     | 9      |

(a) If h(x) = f(g(x)), find h'(1). (b) If H(x) = g(f(x)), find H'(1). (c) If F(x) = f(f(x)), find F'(2). (d) If G(x) = g(g(x)), find

G'(3).

7. If *f* and *g* are the functions whose graphs are shown, let u(x) = f(g(x)),



Find each derivative if it exists.
If it does not exist, write DNE.
(a) u'(1)
(b) v'(1)
(c) w'(1)

8. If *f* is the function whose graph is shown, let h(x) = f(f(x)) and  $g(x) = f(x^2)$ . Use the graph of *f* to estimate each derivative.



9. Use the table to estimate the value of g'(1), where

g(x) = f(f(x)).  $x \quad 0.0 \quad 0.5 \quad 1.0 \quad 1.5 \quad 2.0 \quad 2.5$   $f(x) \quad 1.7 \quad 1.8 \quad 2.0 \quad 2.4 \quad 3.1 \quad 4.4$ 

10. If  $x[f(x)]^3 + xf(x) = 6$  and f(3) = 1, find f'(3). 11. Find an equation of the line tangent to  $y = \ln(\ln x)$  at the point (e, 0).

12. If 
$$f(x) = \frac{x}{\ln x}$$
, find  $f'(e)$ .

13. If  $f(x) = (2-3x)^{-1/2}$ , find f(0), f'(0), f''(0), and f'''(0).

- 14. Find  $\frac{d^2 y}{dx^2}$  by implicit differentiation:  $x^3 + y^3 = 1$ .
- 15. Find  $\frac{d^2 y}{dx^2}$  by implicit differentiation:  $x^2 + xy + y^2 = 1$ .

16. A particle's position is defined by  $s(t) = t^3 - 12t^2 + 36t$ ,  $t \ge 0$ , where *s* is measured in meters and *t* is measured in seconds. (a) Find the acceleration at time *t* 

(a) Find the acceleration at time tand at time t = 3.

(b) When is the particle speeding up? When is it slowing down?

17. A mass attached to a vertical spring has position function given by  $y = A\sin(\omega t)$ , where *A* is the amplitude of its oscillations and  $\omega$  is a constant.

(a) Find the velocity and acceleration as functions of time.(b) Show that the acceleration is proportional to the displacement *y*.(c) Show that the speed is a maximum when the acceleration is 0.