
Understanding the Digital World

Reading Guide

This book is a fascinating introduction to the areas of computer science
that we will cover in greater detail during the school year. I don’t expect you
to remember or understand everything the first time through. That said, you
should find this material interesting and engaging. If you think it’s amazing
that everything we see and do on a computer comes down to sequences of 0s
and 1s processed billions of times per second, then you will enjoy this read
and the class.

You will often hear me use the phrase “under the hood” next year; this
book is the perfect way to begin looking under the hood at a computer
and understanding how the technology that we so often take for granted
actually works. I hope you truly enjoy this read. As you progress through
the chapters, keep in mind the questions below. Mark their answers. Jot
notes in the margins. Think of this as an annotation guide. You will not
have to turn anything in, but do plan on some sort of assessment the first
week of class.

Enjoy this initial dive into the world of computers and computing. I look
forward to our journey together in CS50 AP in the fall.

Preface

• What are the three core technical areas of computing? (Hint: they form
the three parts of this book.)

• What is a potential fourth, according to Kernighan?

Introduction

• Kernighan identifies three important underlying ideas to how comput-
ers and communications systems work. What are they?

1



Part I: Hardware

• Who is often referred to as the world’s first programmer? What is she
known for?

What’s in a Computer?

• What is the role of the CPU?

• If you have a 2.2 GHz computer, what does the “2.2 GHz” part mean?

• What does “mega–” mean? What does “giga–” mean?

• What is the role of RAM? What information does it store?

• What is the difference (or trade-off) between storing something on a
disk versus storing something in RAM?

• The most fundamental element of a computer’s electronic circuitry is
a logic gate. What is a logic gate? (Check out the video for logic gates
in the Crash Course Computer Science series on YouTube.)

• What is Moore’s Law?

Bits, Bytes, and Representation of Information

• What are the three fundamental ideas about how computers represent
information?

• What is the difference between “analog” and “digital”?

• What is a pixel?

• The iPhone 7 has a 12-megapixel camera and a screen with 1334-by-
750-pixel resolution at 326 ppi (pixels per inch). Based on your under-
standing of a pixel, what do these tech specs mean in simple terms?

• Chances are that you have at least one digital file of music on your
computer. See if you can find out its bit rate and sample rate. What
are they? (In iTunes, go to “Edit > Get Info > File.”)1

1This information is called metadata, a key term for our course, especially when it
comes to digital media.

2



• What is ASCII? What is Unicode?

• Unicode makes emojis possible. See if you can find the most recently
created emojis. What are their Unicode values? (Bonus: how many
bits/bytes does it take to represent one Unicode character? How does
this contrast to ASCII?)

• What is a “bit”?

• Why does a power switch have a 0 and a 1 on it? What state does each
represent?

• If you have N bits, how many different patterns of 0s and 1s can you
represent?2

• Let’s say you have a 1-terabyte hard drive. This could mean two dif-
ferent things (controversially). What are the two possible values for
1-terabyte based on powers of two and powers of ten, respectively?

• What is a “byte”? How many different values can be encoded in 1
byte?

• What is the hexadecimal number system?3

• Where is the most common place to come across hexadecimal?

• Kernighan notes a “critical thing” near the end of section 2.3. Mark
this paragraph. It is an idea fundamental to this course. What is his
point here?

Inside the CPU

• What is the function of an accumulator?

2At this point the material might start to seem a little more complex. That’s okay for
now. Absorb what you can. We will spend a lot of time going over the binary system in
class.

3This information can be even more complex. Again, understand what you can on your
own. We will spend time going over it in class together.

3



• Kernighan’s explanation of the “Toy” computer will be a helpful ex-
ample when it comes time for us to write and understand code in the
C programming language. There are also helpful computational think-
ing ideas in this section. For example, what is the purpose of “GOTO”?
“IFZERO”?

• In very simple terms, what is the fetch-decode-execute cycle?

• In the context of computer memory, what purpose do caches serve?

• Who was Alan Turing?4 What is the “Turing test”?

• What does CAPTCHA stand for?

Part II: Software

• What is software? How is it different from hardware?

Algorithms

• How does Kernighan define “algorithm”?

• Kernighan gives a brief aside to data structures. What is his short
explanation for this term?

• What does the term “linear-time” have to do with algorithms?

• What is binary search? What real world application does it have?

• Sorting algorithms will be a focus of our study later in the first semester.
For now, which algorithm is better? In simple terms, how does this
better algorithm work? That is, what is its general approach to sorting?

• What is the Traveling Salesman Problem?

• Look up the word “heuristic” in the context of computer science. How
does it relate to the topic of P v. NP?

4You may know him as the character played by the inimitable Benedict Cumberbatch
in The Imitation Game.

4



Programming and Programming Languages

• What is the difference between an algorithm and a program?

• What is the function of an assembler and assembly language?

• Are assembly language instructions the same for all computer proces-
sors?

• What is the function of a compiler?

• What are the advantages of high-level languages relative to assembly
language?

• What are the five high-level languages Kernighan demonstrates code
with? Which seems hardest to read and understand? Easiest?5

• What is a library? What is a library’s API?

• What is the term for a flaw in one’s code? What is the origin of this
term as it relates to computers?

• What are general definitions for the following terms: trade secrets,
copyright, patents, licenses?

• What is a “standard” in the world of computing?

• What is the relationship between source code and object code?

• What does it mean for code to be “open source”?

• What is one example of open source software?

That’s all I want you to read: 5 chapters. Really. Stop at page 86
(unless you simply can’t put it down in which case read as much as you like).
That’s about the first 1/3 of the book. We will use the latter 7 chapters
throughout the school year. Because of its relatively short length as summer
reading assignments go, don’t read this just once. I encourage lots of frequent
Googling. Dive down some Wikipedia rabbit holes. Explore the tech specs

5For your reference, CS50 uses C and Python as its primary languages. Other than a
quick introduction to programming using Scratch, all of first semester will be spent focused
on learning C.

5



of your own computer(s). (For example, what is the size of your L1 cache?)
Read about the history of Linux (which our CS50 IDE6 uses as its operating
system). These 5 chapters will prepare us to jump right into Unit 0 on Day
0 in August.7 As I said above, I cannot wait to start CS50 AP with all of
you. Enjoy your summer. See you in the fall!

6IDE stands for Integrated Development Environment. In simple terms it is where we
write and execute our programs.

7Computer scientists start counting at 0, not 1.

6


